

a)	Prove that if a + b and b + c are odd integers where a, b and c are integers, then a
	+ c is even. What kind of proof did you use?

b) Prove that if a and b are integers and ab is odd then both of a and b are odd. What kind of proof did you use?

Exercise 2

Exercise 1

- a) Prove by contradiction that the sum of an irrational number and a rational number is irrational.
- b) Prove or disprove that the product of a nonzero rational number and an irrational number is irrational.

Exercise 3

Prove that the proposition P(1), where P(n) is the proposition "If n is a positive integer then $2n \ge n+1$ " is true. What kind of proof did you use?

Exercise 4	(10^{-1})	points))
		I ,	

Prove that if n is a perfect cube, then n+3 is not a perfect cube.

Exercise 5

Prove that if n is a positive integer, then n is odd if and only if 3n + 2 is odd.

Exercise 6

Is this reasoning for finding the solutions of the equation $\sqrt{(5x^2 - 4)}=2x$ correct? (1) $\sqrt{(5x^2-4)}=2x$ is given; (2) $5x^2 - 4 = 4x^2$, obtained by squaring both sides of (1); (3) $x^2 - 4 = 0$, obtained by subtracting $4x^2$ from both sides of (2); (4) (x - 2)(x + 2) = 0, obtained by factoring the left-hand side of x^2-4 ; (5) x=2 or x=-2, which follows because ab = 0 implies that a = 0 or b=0.

(<u>10 points)</u>

(10 points)

(15 points)

(15 points)

(10 points)

American University of Beirut Department of Computer Science CMPS 211 – Discrete Mathematics – Fall 14/15

Exercise 7

(10 points)

Prove that there is a positive integer that equals the sum of the positive integers not exceeding it. Is your proof constructive or non-constructive?

Exercise 8

(10 points)

Show that these statements about the real number x are equivalent:

- 1. x is rational,
- 2. x/3 is rational,
- 3. 5x 2 is rational.

Exercise 9

(10 points)

Show that these statements about the integer n are equivalent:

- 1. n^2 is even,
- 2. 1-n is odd,
- 3. n^3 is even,
- 4. $n^2 + 1$ is odd.