American University of Beirut Department of Computer Science CMPS 211 - Discrete Mathematics - Fall 14/15

Please solve the following exercises and submit BEFORE 8:00 am of Tuesday $\mathbf{1 4}^{\text {th }}$, October.

Exercise 1

a) Prove that if $\mathrm{a}+\mathrm{b}$ and $\mathrm{b}+\mathrm{c}$ are odd integers where a, b and c are integers, then a +c is even. What kind of proof did you use?
b) Prove that if a and b are integers and ab is odd then both of a and b are odd. What kind of proof did you use?

Exercise 2

(15 points)
a) Prove by contradiction that the sum of an irrational number and a rational number is irrational.
b) Prove or disprove that the product of a nonzero rational number and an irrational number is irrational.

Exercise 3

Prove that the proposition $\mathrm{P}(1)$, where $\mathrm{P}(\mathrm{n})$ is the proposition "If n is a positive integer then $2 \mathrm{n} \geq \mathrm{n}+1$ " is true. What kind of proof did you use?

Exercise 4

Prove that if n is a perfect cube, then $\mathrm{n}+3$ is not a perfect cube.

Exercise 5

Prove that if n is a positive integer, then n is odd if and only if $3 n+2$ is odd.

Exercise 6

Is this reasoning for finding the solutions of the equation $\sqrt{ }\left(5 \mathrm{x}^{2}-4\right)=2 \mathrm{x}$ correct? (1) $\sqrt{ }\left(5 x^{2}-4\right)=2 x$ is given; (2) $5 x^{2}-4=4 x^{2}$, obtained by squaring both sides of (1); (3) $x^{2}-$ $4=0$, obtained by subtracting $4 x^{2}$ from both sides of (2); (4) $(x-2)(x+2)=0$, obtained by factoring the left-hand side of $x^{2}-4$; (5) $x=2$ or $x=-2$, which follows because $a b=0$ implies that $\mathrm{a}=0$ or $\mathrm{b}=0$.

American University of Beirut
Department of Computer Science
CMPS 211 - Discrete Mathematics - Fall 14/15

Exercise 7

(10 points)
Prove that there is a positive integer that equals the sum of the positive integers not exceeding it. Is your proof constructive or non-constructive?

Exercise 8

(10 points)
Show that these statements about the real number x are equivalent:

1. x is rational,
2. $x / 3$ is rational,
3. $5 x-2$ is rational.

Exercise 9

Show that these statements about the integer n are equivalent:

1. n^{2} is even,
2. 1-n is odd,
3. n^{3} is even,
4. $\mathrm{n}^{2}+1$ is odd.
